首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   5篇
测绘学   3篇
大气科学   6篇
地球物理   28篇
地质学   18篇
海洋学   8篇
天文学   2篇
自然地理   3篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1990年   2篇
  1984年   1篇
  1973年   1篇
排序方式: 共有68条查询结果,搜索用时 187 毫秒
11.
A spatiotemporal calculus for reasoning about land-use trajectories   总被引:1,自引:0,他引:1  
Earth observation images are a powerful source of data about changes in our planet. Given the magnitude of global environmental changes taking place, it is important that Earth Science researchers have access to spatiotemporal reasoning tools. One area of particular interest is land-use change. Using data obtained from images, researchers would like to express abstractions such as ‘land abandonment’, ‘forest regrowth’, and ‘agricultural intensification’. These abstractions are specific types of land-use trajectories, defined as multi-year paths from one land cover into another. Given this need, this paper introduces a spatiotemporal calculus for reasoning about land-use trajectories. Using Allen’s interval logic as a basis, we introduce new predicates that express cases of recurrence, conversion and evolution in land-use change. The proposed predicates are sufficient and necessary to express different kinds of land-use trajectories. Users can build expressions that describe how humans modify Earth’s terrestrial surface. In this way, scientists can better understand the environmental and economic effects of land-use change.  相似文献   
12.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
13.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated dynamic earthquake loads. Particularly for experimental seismic collapse simulation of structures, hybrid testing can be an attractive alternative to earthquake simulators due to the limited capacity of most facilities and the difficulties and risks associated with a collapsing structure on a shaking table. The benefits of hybrid simulation through collapse can be further enhanced through accurate and practical substructuring techniques that do not require testing the entire structure. An innovative substructuring technique for hybrid simulation of structures subjected to large deformations is proposed to simplify the boundary conditions by overlapping the domains between the numerical and experimental subassemblies. The advantages of this substructuring technique are the following: it requires only critical components of the structure to be tested experimentally; it reduces the number of actuators at the interface of the experimental subassemblies; and it can be implemented using typically available equipment in laboratories. Compared with previous overlapping methods that have been applied in hybrid simulation, this approach requires additional sensing in the hybrid simulation feedback loop to obtain internal member forces, but provides significantly better accuracy in the highly nonlinear range. The proposed substructuring technique is verified numerically and validated experimentally, using the response of a four‐story moment‐resisting frame that was previously tested to collapse on an earthquake simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
14.
15.
Base isolated buildings subjected to extreme earthquakes can exceed their design displacements and impact against the surrounding moat wall. To better understand the consequences of impact on the superstructure, an impact element considering moat wall flexibility is proposed based on impact theory and observations during experimental simulations. It is demonstrated that numerical simulations using the proposed impact element can capture the dominant characteristics of the contact force observed in experiments of base isolated buildings impacting various moat wall configurations including concrete walls with soil backfill and rigid steel walls. The contact force is dependent on impact velocity, geometry, and material properties at the contact surface, and the global dynamic characteristic of the moat wall. Properties of the moat wall impact element are derived based on mechanics‐based models considering material properties and geometric measurements of the experimental setup. For this purpose, the moat wall is modeled as a flexural column with a concentrated nonlinear hinge at its base and soil backfill considered through a damped elastic foundation then generalized into a single degree of freedom system. The resulting impact element is shown to accurately capture both local deformation and the vibration aspects of impact observed in experiments and the effects of impact on superstructure response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
16.
Deficient management of cinnabar mining left the San Joaquín region with high concentrations of mercury in its soils (2.4 – 4164 mg kg-1). Numerous cinnabar mines have contributed to the dispersion of mercury into agricultural (0.5 –314 mg kg-1) and forest (0.2 – 69 mg kg-1) soils. Sediments are a natural means of transportation for mercury, causing its spreading, especially in areas near mine entrances (0.6 – 687 mg kg-1). The nearness of maize crops to mines favors mercury accumulation in the different plant structures, such as roots, stems, leaves, and grain (0.04 – 8.2 mg kg-1); these being related to mercury volatilization and accumulation in soils. Mercury vapor present in the settlements could indicate a constant volatilization from lands and soils (22 – 153 ng m-3). The mercury levels found in the soils, in maize grain, and in the air resulted greater than the standards reported by the Official Mexican Norm (NOM) and the World Health Organization (WHO). Mercury in rainwater is due mainly to the presence of suspended atmospheric particles, later deposited on the surface (1.5 – 339 μg |-1). Mercury dissolution was found in the drinking water (10 – 170 ng |-1), with concentrations below those established by the NOM and the WHO. The contamination existing in the San Joaquín region does not reach the levels of the world’s greatest mercury producers: Almaden (Spain) and Idrija (Slovenia). It is, however, like that found in other important second degree world producers such as Guizhou (China). The population of San Joaquín, as well as its surrounding environment, are constantly exposed to mercury contamination, thus making a long term monitoring necessary to determine its effects, especially to people.  相似文献   
17.
A fully implicit iterative integration procedure is presented for local and geographically distributed hybrid simulation of the seismic response of complex structural systems with distributed nonlinear behavior. The purpose of this procedure is to seamlessly incorporate experimental elements in simulations using existing fully implicit integration algorithms designed for pure numerical simulations. The difficulties of implementing implicit integrators in a hybrid simulation are addressed at the element level by introducing a safe iteration strategy and using an efficient procedure for online estimation of the experimental tangent stiffness matrix. In order to avoid physical application of iterative displacements, the required experimental restoring force at each iteration is estimated from polynomial curve fitting of recent experimental measurements. The experimental tangent stiffness matrix is estimated by using readily available experimental measurements and by a classical diagonalization approach that reduces the number of unknowns in the matrix. Numerical and hybrid simulations are used to demonstrate that the proposed procedure provides an efficient method for implementation of fully implicit numerical integration in hybrid simulations of complex nonlinear structures. The hybrid simulations presented include distributed nonlinear behavior in both the numerical and experimental substructures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
18.
The Eastern Venezuelan Basin (EVB) contains one of the largest hydrocarbon accumulations in the world. Main petroleum targets are buried structures of the Monagas Fold-Thrust Belt (MFTB) which forms the northeastern edge of the EVB. The objective of this study is to integrate the seismic and well data that has been acquired over the last 10 years across the MFTB and EVB, to create an updated structural model. Three regional cross sections 60-75 km long are presented across an area of 4000 km2.Five structural domains are described: Amarilis, Furrial, Jusepín, Cotoperí and Pirital. They are characterized by thrusts and high-angle reverse faults. Structural style changes along strike are related to variations in depth of detachment levels and to the strike-slip component of the deformation. We have estimated a shortening between 43 and 59 km that increases eastward over a distance of 40 km.The evolution of the MFTB is divided in four episodes based on stratigraphic, structural and thermal maturity evidences: (1) Oligocene-early Miocene initial movement of Pirital thrust. (2) Early Miocene simultaneous movement on Pirital, Furrial and Cotoperí thrusts. (3) Middle Miocene increases in velocity and change in geometry of Pirital thrust, during an out of sequence period of thrusting. (4) Late Miocene to Holocene minor thrust activity. This evolution is consistent with the oblique convergence between the Caribbean and South American plates and the convergence between North and South America that affected Eastern Venezuela during the Cenozoic.By analyzing the along-strike variations in structural style, new exploratory opportunities have been identified. Under the Orocual and Santa Bárbara fields two untested duplex structures are proposed; they were developed during the middle Miocene. Other prospective hydrocarbon traps are associated to oblique transpressive faults that create anticline structures.  相似文献   
19.
This paper presents a new structural-stratigraphic approach to constrain the reservoir potential of the middle Miocene turbidite systems within the Monagas Fold-Thrust Belt (MFTB) and Maturín Sub-Basin (MSB) of eastern Venezuela. In the frontal anticline structures of the MFTB (Amarilis Area) light hydrocarbons have been produced from these turbidite systems which were deposited in a foreland basin with a complex tectonostratigraphic evolution.In order to predict the location of other analogous reservoirs we used the structural model presented in Part I (Parra et al., 2010) to developed a palaeo-topographic reconstruction at early-middle Miocene. We have then used this reconstruction to constrain the palaeogeography of the middle Miocene foredeep where the turbidites were deposited. The area considered has 5000 km2.By middle Miocene four regions are identified: 1) The southern basin margin dipped 1.5-2.5° north; 2) The foredeep axis had a southwest-northeast orientation. Within the foredeep the proto-structures of the MFTB created submerged highs that control the distribution of sediments; 3) The northern basin margin dipped 3-4° south; the coastline was controlled by the Pirital thrust sheet; 4) The main source of sediments was located towards the northwest on the Pirital thrust sheet and Serranía del Interior.Variations in shortening across the strike of the Pirital thrust were accommodated by a lateral ramp which controlled the location of a valley that acted as the main sediment pathway for the sediments that fed the turbidite system. This relationship between the thrust belt geomorphology and the location of turbidite sediment within the foredeep must be considered in order to assess the distribution of the Miocene turbidite reservoirs.  相似文献   
20.
A micro-seismic network was used for monitoring the wreck of the Costa Concordia cruise ship, wrecked and run agrounded along the Giglio Island coasts during the night of 13 January 2012, until its removal. The seismic traces were processed by means of real-time and “a posteriori” procedures to detect transients that could be ascribed to wreck movements on the sea bed to integrate this information in an early warning system for assessing the wreck stability. After a first discrimination of the transients using amplitude criteria we proceeded to the localization of the detected signals to focus the attention only on the transients originated in the shipwreck resting area. The results showed that most of the events localized on the wreck were likely related to human work activities or sudden internal brittle failure but not to displacements on the seafloor. Instead, the displacements are associated to the impact on the vessel of great sea storms which approach were well correlated with the increasing seismic noise at low frequency. The carried out procedures based on this unique dataset represent an opportunity to test seismic monitoring techniques also in not usual engineering context to support emergency management activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号